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Generalized Uncertainty Principle from Quantum
Geometry
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The generalized uncertainty principle of string theory is derived in the framework
of quantum geometry by taking into account the existence of an upper limit on
the acceleration of massive particles.

1. INTRODUCTION

The problem of reconciling quantum mechanics (QM) with general
relativity is a task of modern theoretical physics which has not yet found a
consistent and satisfactory solution. The difficulty arises because general
relativity deals with events which define the world-lines of particles, while
QM does not allow the definition of trajectory; in fact the determination of
the position of a quantum particle involves a measurement which introduces
an uncertainty into its momentum (Wigner, 1957; Saleker and Wigner, 1958;
Feynman and Hibbs, 1965).

These conceptual difficulties have their origin, as argued in Candelas
and Sciama (1983) and Donoghue et al. (1984, 1985), in the violation, at
the quantum level, of the weak principle of equivalence on which general
relativity is based. Such a problem becomes more involved in the formulation
of a quantum theory of gravity owing to the nonrenormalizability of general
relativity when one quantizes it as a local quantum field theory (QFT) (Birrel
and Davies, 1982).

1 Dipartimento di Scienze Fisiche “E.R. Caianiello,” Università di Salerno, 84081 Baronissi
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Nevertheless, one of the most interesting consequences of this unification
is that in quantum gravity there exists a minimal observable distance on the
order of the Planck distance, lP 5 !G"/c3 , 10233 cm, where G is the New-
ton constant. The existence of such a fundamental length is a dynamical
phenomenon due to the fact that, at Planck scales, there are fluctuations of
the background metric, i.e., a limit of the order of the Planck length appears
when quantum fluctuations of the gravitational field are taken into account.

In the absence of a theory of quantum gravity, one tries to analyze
quantum aspects of gravity retaining the gravitational field as a classical
background, described by general relativity, and interacting with a matter
field. This semiclassical approximation leads to QFT and QM in curved
space-time and may be considered as a preliminary step toward a complete
quantum theory of gravity. In other words, we take into account a theory where
geometry is classically defined while the source of the Einstein equations is
an effective stress-energy tensor where contributions of matter quantum fields,
gravity self-interactions, and quantum matter–gravity interactions appear
(Birrel and Davies, 1982).

The canonical commutation relations between the momentum operator
pn and position operator xm, which in Minkowski space-time are [xm, pn] 5
i"hmn, in a curved space-time with metric gmn can be generalized as

[xm, pn] 5 i"gmn(x) (1)

Equation (1) contains the gravitational effects of a particle in first quantization
scheme. Its validity is confined to asymptotically flat curved space-time so
that the tensor metric can be decomposed as gmn 5 hmn 1 hmn, where hmn is
the (local) perturbation to the flat background (Ashtekar, 1990). We note that
the usual commutation relations between position and momentum operators
in Minkowski space-time are obtained by using the vierbein formalism, i.e.,
by projecting the commutator and the metric tensor on the tangent space.

As is well known, a theory containing a fundamental length on the order
of lP (which can be related to the extension of particles) is string theory. It
provides a consistent theory of quantum gravity and avoids the above-men-
tioned difficulties. In fact, unlike point particle theories, the existence of a
fundamental length plays the role of a natural cutoff. In such a way the
ultraviolet divergences are avoided without appealing to renormalization and
regularization schemes (Green et al., 1987).

By studying string collisions at Planckian energies and through a renor-
malization group-type analysis (Veneziano, 1986; Amati et al., 1987, 1988,
1989, 1990; Gross and Mende, 1987, 1988; Konishi et al., 1990; Guida and
Konishi, 1991; Yonega, 1989), the emergence of a minimal observable dis-
tance yields the generalized uncertainty principle
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Here, a is a constant. At energies much below the Planck mass, mP 5
!"c/G , 1019 GeV/c2, the extra term in Eq. (2) is irrelevant, and the Heisen-
berg relation is recovered, while as we approach the Planck energy this term
becomes relevant and is related to the minimal observable length.

The purpose of this paper is to recover the generalized uncertainty
principle, (2), in the framework of quantum geometry theory (Caianiello,
1979, 1980a, b, 1992). It incorporates quantum aspects into space-time geome-
try so that one-particle QM acquires a geometric interpretation. Its formulation
is based on the fact that the position and momentum operators are represented
as covariant derivatives with an appropriate connection in the eight-dimen-
sional manifold and the quantization is geometrically interpreted as the curva-
ture of phase space.

A consequence of this geometric approach is the existence of a maximal
acceleration defined as the upper limit to the proper acceleration ! experi-
enced by massive particles along their worldlines (Caianiello, 1981, 1984;
Caianello et al., 1982). It can be interpreted as being mass-dependent,
!m 5 2mc3/" (m is the mass of particle), or as an universal constant,
! 5 mP c3/" (mP is the Planck mass). Since the regime of validity of (2) is
at Planck scales, in order to derive it from quantum geometry, we will consider
the maximal acceleration as depending on the Planck mass.

The existence of a maximal acceleration has several implications for
relativistic kinematics (Scarpetta, 1984), an energy spectrum of a uniformly
accelerated particle (Caianiello, 1990a), a Schwarzschild horizon (Gasperini
and Scarpetta, 1989), expansion of the very early universe (Caianiello et al.,
1991), tunneling from nothing (Capozziello and Feoli, 1993; Caianiello, et
al., 1994), and mass of the Higgs boson (Kuwata, 1996). It also makes the
metric observer-dependent, as conjectured by Gibbons and Hawking (1977)
and leads, in a natural way, to hadronic confinement (Caianiello et al., 1988).
The regularizing properties of the maximal acceleration have been recently
analyzed in Feoli et al. (1999), and its applications in the framework of string
theory have been studied in Feoli (1993) and McGuigan (1994).

Moreover, concrete experimental tests of the consequence of a maximal
acceleration have been proposed in Caianiello et al. (1990a, b), Papini et al.
(1995), and Lambiase et al. (1998).

Limiting values for the acceleration were also derived by several authors
on different grounds and applied to many branches of physics (Brandt, 1983,
1984, 1989; Das, 1980; Frolov and Sanchez, 1991; Papini, 1992, 1995; Pati,
1992; Sanchez, 1993; Toller, 1988, 1990, 1991; Vigier, 1991, Wood, et al.,
1989; Wood and Papini, 1992).
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The paper is organized as follows. In Section 2, we briefly discuss
quantum geometry, recalling only the main topics used in this paper. Section
3 derives the generalized uncertainty principle from quantum geometry. Con-
clusions are discussed in Section 4.

2. QUANTUM GEOMETRY

Quantum geometry includes the effects of the maximal acceleration on
the dynamics of particles in enlarging the space-time manifold to an eight-
dimensional space-time tangent bundle TM, i.e., M8 5 V4 ^ TV4, where V4

is the background space-time equipped with metric gmn. In this way, the
invariant line element defined in M8 is generalized as

ds̃2 5 gAB dX A dX B, A, B 5 1, . . . , 8 (3)

where the coordinates of M8 are

X A 5 1xm;
c2

!
dxm

ds 2, m 5 1, . . . , 4 (4)

ds is the usual infinitesimal element line, ds2 5 gmn dxm dxn, ! is the maximal
acceleration, and

gAB 5 gmn ^ gmn (5)

From Eq. (5), it follows that the generalized line element (3) can be written as

ds̃2 5 gmn 1dxm dxn 1
c4

!2 dẋm dxn2 (6)

An embedding procedure can be developed (Caianiello et al., 1990b) in order
to find the effective space-time geometry where a particle moves when the
constraint of the maximal acceleration is present. In fact, if we find the
parametric equations that relate the velocity field ẋm to the first four coordi-
nates xm, we can calculate the effective four-dimensional metric g̃mn induced
on the hypersurface locally embedded in M8. For a particle of mass m
accelerating along its worldline, Eq. (6) implies that it behaves dynamically
as if it is embedded in a space-time with the metric

ds̃2 5 11 1 c4
ẍsẍs

!2 2 ds2 (7)
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or, in terms of the metric tensor,

g̃mn 5 11 1 c4
ẍsẍs

!2 2gmn (8)

which depends on the squared length of the (spacelike) four-acceleration,
.ẍ.2 5 gsrẍsẍ r. Particularly interesting is the case in the absence of gravity,
gmn 5 hmn, which corresponds to a flat background. In this case, any accelerat-
ing particle experiences a gravitational field given by

g̃mn 5 11 1 c4
ẍsẍs

!2 2hmn 5 hmn 1 hmn (9)

where hmn 5 c4(ẍsẍs/!2)hmn is the quantum (local) perturbation to the Min-
kowskian metric. From Eq. (9) it follows that

g̃mn , 11 2 c4
ẍsẍs

!2 2hmn (10)

We stress that this curvature is not induced by matter through the conven-
tional Einstein equation; it is due to the motion in momentum space and
vanishes in the limit " → 0. Thus, it represents a quantum correction to the
given background geometry, which henceforth, we will assume flat.

3. GENERALIZED UNCERTAINTY PRINCIPLE

Let us now derive the generalized uncertainty principle (2) starting from
relation (1), where the tensor metric is induced by the acceleration of a
massive particle in a high-energy scattering process.

According to the hypothesis that microscopic space-time should be
regarded as a four-dimensional hypersurface locally embedded in the larger
eight-dimensional manifold, as discussed in the previous section, accelerated
particles can be associated to four-dimensional hypersurfaces whose curvature
is, in general, nonvanishing. At this semiclassical level, the effective space-
time geometry experienced by interacting particles is curved.

Inserting (9) into (1), one gets

[xm, p v] 5 i" 11 1 c4
(ẍsẍs)m

!2 2
21

hmn (11)

The right-hand side is understood as a c-function. The term (ẍsẍs)m is the
mean value of the squared length of the four-acceleration which takes into
account the quantum fluctuation of the metric.
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Since ẍm 5 (1/mc)dpm/ds, dpm is the transferred momentum, it follows that

(ẍsẍs)m . 1
m2c2 ds2 Fpip j

.
›

p .2
2 dijG (dpi dp j)m , i, j 5 1, 2, 3 (12)

where the high-energy limit E À m has been used. Due to the average on
the product of transferred momenta, one can assume

(dpi dp j)m , Dp2dij (13)

Then Eq. (12) reads

(ẍsẍs)m , 22
Dp2

m2c2 ds2 (14)

Dp is the transferred momentum along the x-direction.
As is well known, two noncommutating operators A and B defined in

a Hilbert space, for any given state, satisfy the uncertainty relation

DADB $
1
2
.^[A, B]&.

If A 5 xm and B 5 pn, Eqs. (10) and (11) allow us to write

DxmDpn $
"

2
.hmn.?Z1 2 c4

(ẍsẍs)m

!2 Z (15)

From Eq. (14) and for m 5 n 5 1, one obtains

Dx Dp $
"

2
1

"c2

m2!2 ds2 Dp2 (16)

For ! 5 mPc3/", where mP 5 ("c/G)1/2, and ds , lc , "/mc, with lc the
Compton length, this becomes

Dx Dp $
"

2
1

a
c3 G Dp2 (17)

that is, we recover Eq. (1). a is a free parameter. Equation (17) is the result
we want: The geometrical interpretation of QM through a quantization model
formulated in a eight-dimensional manifold, implying the existence of an
upper limit on the acceleration of particles, leads to the generalized principle
of string theory.

It is worthwhile to note that, in the last term of (17), the dependence
on " disappears. So this term is not related to quantum fluctuations, but,
as the uncertainty principle for strings, is due to the intrinsic extension
of particles.
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4. CONCLUSIONS

Starting from the uncertainty principle of QM written in a space-time
where the effective geometry is induced by the acceleration of particles
moving along their worldlines, the generalized uncertainty principle of string
theory has been derived.

In this model we have assumed a maximal acceleration as a universal
constant expressed in term of the Planck mass, whose value is ! , 1052 m/
sec2. As expected, it becomes relevant at very high energy where the emer-
gence of a minimal observable distance occurs.

Unlike string theory, in which the extension of particles is introduced
ab initio, in quantum geometry such an extension is taken into account
through the constraint of the maximal acceleration, that is, by modifying the
geometry in which an accelerating particle moves.

In this sense, we can state that the geometrical formulation of QM is
an alternative approach in order to study the physics of extended objects.

However, we have to note that we have not used any second quantization
scheme or full QFT approach in deriving our generalized uncertainty princi-
ple; nevertheless it is indicative of the fact that quantum geometry is an
alternative scheme leading to physically interesting results.
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